

Application of humic amendments in tropics: achievements and problems (case study on Bali island)

Ketut Suada¹, Olga Yakimenko², Nataliya Shchegolkova², Oleg Gladkov³

¹Faculty of Agriculture Udayana University, Bali, Indonesia, ²Faculty of Soil Science, Lomonosov Moscow State University, Russia ³ Ltd RET, Saint-Petersburg, Russia

ASEAN-RUSSIA JOINT PROJECT

ANNEX 1

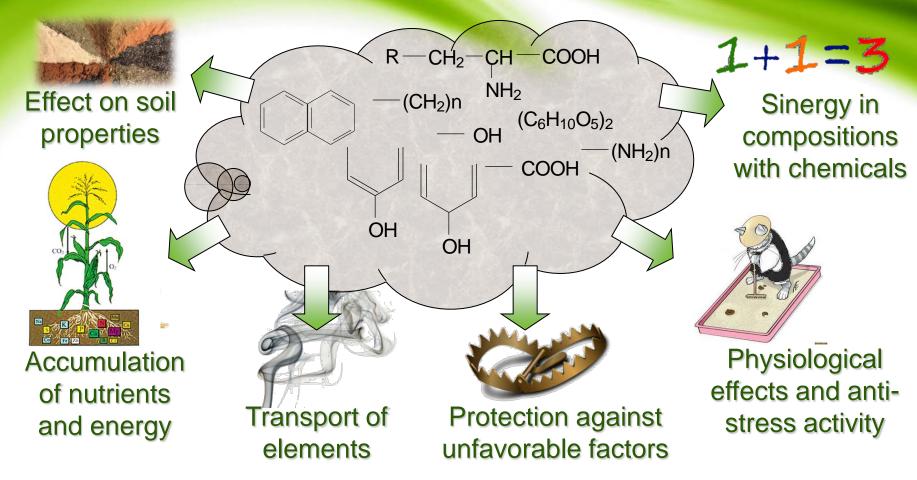
Project classification code:

AGF/ARD/16/003/REG

Project title: Research and Development Cooperation Russia-ASEAN on Development and Implementation of Innovative Agricultural Technologies to Increase Sustainability of Agro-Ecological Systems"

RESEARCH SITE

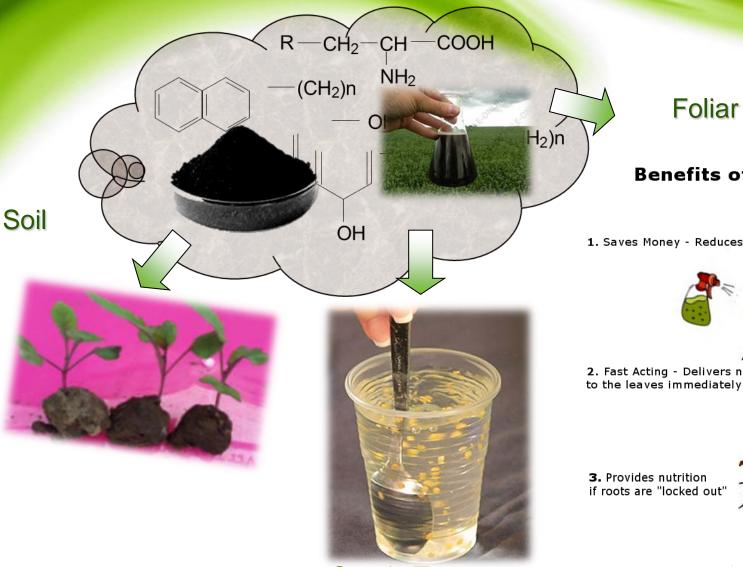
Java



Indonesia, Bali

- 8°39′S 115°13′E
- Climate: warm and humid all year around with two distinctive seasons: dry and rainy
- Rice, vegetables, greens
- Pests

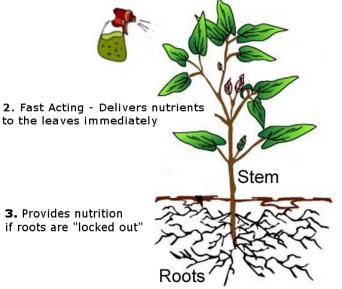
Carl Mite realized and a latter the walk who is


BENEFITS OF HS

HS possess a wide variety of properties that are of interest for agricultural and environmental technologies

Tppt.com

APPLICATION MODES



Seeds Treatment

Foliar Spray

Benefits of Foliar Feeding

1. Saves Money - Reduces need for conventional fertilizers

4. Helps break through nutrient lockout

FIELD TRIAL OF LIGNOHUMATE PRODUCT UNDER CONDITION OF BALI ISLAND

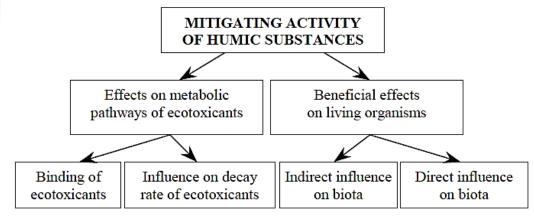


Figure 1. Principal components of mitigating activity of humic substances.

Credits to: Kulikova et al, 2005

Objectives: To evaluate effects:

- on greens;

_

- on rice both along and at combined application with pesticide;
- on cabbage in combination with biological agent to control clubroot and promote plant growth

 HS can either enhance or reduce toxicity of xenobiotics/availability of chemicals, exerting synergistic or antagonistic effects on plant growth, depending on chemical and physiological mechanisms involved

EFFECT ON GREENS, BALI

LIGNOHUMATE 0, 0.05, 0,1% ON CORIANDER

LIGNOHUMATE

LIGNOHUMATE ON LACTUCA SATIVA

Dry weight (g) on Lignohumate application 10 days after sowing

	Crops/ concentration	0.0%	0.05%	0.1%
	Yellow Salad (<i>Lactuca sativa</i>)	0.09 (c)	0.24 (b)	0.31 (a)
E ON RUCCOLA	Rukola/Arugula (<i>Eruca sativa</i>)	0.05 (b)	0.26 (a)	0.28 (a)
	Coriander (Coriandrum sativum)	0.16 (b)	0.23 (a)	0.27 a)
0.05% 0.1%	Red cabbage (<i>Brassica oleracea</i> var. capitata)	0.02 (a)	0.05 (a)	0.07 (a)

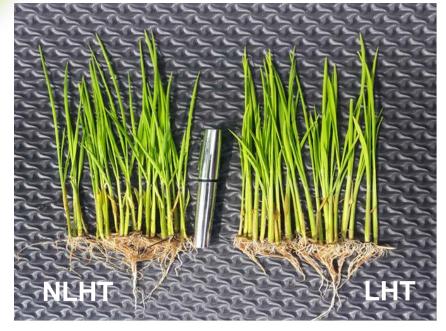
Credits to: Dr Ketut Suada et al

FIELD TRIAL

FIELD TRIAL OF LIGNOHUMATE PRODUCT UNDER BALLCONDITION BY: U.dayona Nescer State Unitoenhan: Solak Anogatowa Despasae

Date : May - August 2015

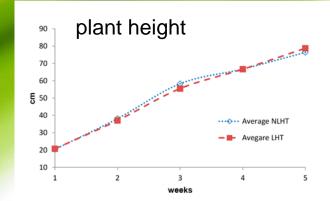
beta-cyfluthrin


Experimental design:

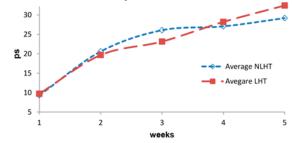
- A = NPK + insecticide (Sumo) 100%
- **B** = NPK + insecticide (Sumo) 50%
- **C** = NPK + insecticide (Sumo) 0%
- **D**= A + LH-SuperL: seeds pretreatment + 2 times foliar spray
- **E** = B + LH-SuperL: seeds pretreatment + 2 times foliar spray
- **F** = C + LH-SuperL: seeds pretreatment + 2 times foliar spray

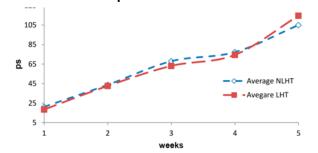
Complete randomized design with 4 replications of 4 m x 5 m blocks and planting spacing of 30 cm x30 cm. All the plots were treated with basic NPK fertilization: Urea (46% N) and Ponska (15% N, 15% P_2O_5 and 15% K_2O) with doses of Urea 2 kg/100 m² + Ponska 2 kg/100 m² Rice (Oryza sativa L., HYV Cigeulis) was cultivated under fully irrigated conditions.

PLANT GROWTH


Seedling of 10 days after sowing on non-Lignohumate treatments NLHT (left) and Lignohumate treatments LHT (right).

Seedling height and root length at 2 weeks after sowing, cm


	NLHT ¹		LHT ²	
Parameter	Root	Shoot	Root	Shoot
Length	12.3±0.4	20.1±0.7	13.1±0.3	19.4±0.2
	Α	а	В	b
Signification.	t (calculated)	t (calculated)		
Student t-test	= 8.95	= 13.12		
5% (n=45)				
	t (table) =	t (table) =		
	1.98	2.18		


fppt.com

number of tillers per hill

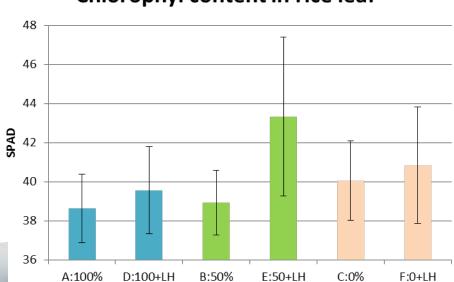
number of leaf per hill

Rice plants growth characteristics during 1st five weeks of vegetation on non-lignohumate (NLHT) and lignohumate (LHT) treatments:

PLANT GROWTH

Plant height, tiller number, and productive tiller number 3 weeks after transplanting

Treatments*	Plant height	Total tiller hill ⁻¹	Productive tillers hill ⁻¹
Treatments*	(cm)	(No.)	(No.)
А	60.8±0.2 a	27.4±0.4 a	16.6±2.3 a
В	59.3±1.1 a	25.0±0.9 a	17.4±2.2 a
С	54.9±0.8 ab	25.8±0.1 a	19.1±2.4 a
D	57.3±0.5 ab	21.6±2.0 a	18.7±3.3 a
E	57.2±0.2 ab	23.8±1.2 a	19.3±4.2 a
F	52.2±1.1 b	24.1±1.2 a	17.4±0.5 a
NLHT ¹	60.8±0.2 a	27.4±0.9 a	16.6±0.6 a
LHT ²	59.3±3.0 a	25.0±0.6 a	17.4±0.3 a



LEAF NUMBER, LEAF AREA AND CHLOROPHYLL CONTENT IN RICE LEAVES 5 WEEKS AFTER TRANSPLANTING

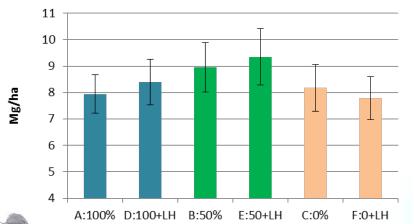
Leaf number, and leaf area 5 weeks after transplanting

Treatments [*]	Leaf number (No.)	Leaf area (cm ² hill ⁻¹)
Α	71±3.0 a	8635±16 a
В	69±6.0 a	9947±23 a
С	63±7.0 a	8555±12 a
D	60±0.0 a	8902±13 a
E	69±0.1 a	8937±11 a
F	60±0.9 a	8640±12 a
NLHT ¹	67.7±3.5 a	9045±22 a
LHT ²	63.0±2.3 a	8826±23 a

Chlorophyl content in rice leaf

THE NUTRITIONAL CONTENT OF RICE

T	Content (mg/100g)					
Treatments [*]	Water content	Ash	Protein	Lipid	Carbohydrate	Amylose
А	11,65±2,0 b	1,29±0,4 e	12,87±0,3 a	3,70±0,2 b	70,51±4,0 e	10,76±1,3 f
В	10,72±1,4 f	1,55±0,1 c	12,88±0,7 a	3,93±0,5 a	70,94±3,1 c	11,96±2,2 c
С	11,31±0,5 d	2,16±0,2 b	12,86±0,4 a	3,52±0,7 c	70,15±5,3 f	11,13±3,0 e
D	10,88±0,4 e	2,21±0,7 a	12,85±0,8 a	2,37±0,2 e	71,68±2,4 a	12,66±2,1 a
E	11,47±1,4 c	1,16±0,4 f	12,87±0,5 a	3,92±0,1 a	70,58±7,2 d	12,49±1,7 b
F	11,75±0,7 a	1,33±0,2 d	12,88±0,5 a	2,52±0,2 d	71,54±3,2 b	11,42±1,6 d
NLHT ¹	11,23±0,3 a	1,67±0,2 a	12,87±0,5 a	3,72±0,5 a	70,53±4,1 a	11,28±2,1a
LHT ²	11,37±0,8 a	1,57±0,4 a	12,87±0,6a	2,94±0,2 b	71,27±4,2 b	12,19±1,8 b


RICE YIELD AND GRAIN QUALITY

Effect of Lignohumate and pesticide on rice yield and yield components

Treatments*	1000-grain dry weight (g)	Grain hill ⁻¹ (No.)	Panicle hill ⁻¹ (No.)
Α	25.5±3.0 b	1412±12 a	27.4±1.6 a
В	24.7±3.3 b	1571±19 a	25.0±2.3 a
С	25.4±4.0 b	1805±13 a	25.8±1.3 a
D	24.6±3.0 b	1709±23 a	21.6±2.5 a
E	36.5±3.3 a	1762±16 a	23.8±3.3 a
F	24.1±3.0 b	1410±11 a	24.1±4.5 a
NLHT ¹	25.2±3.4 a	1596±15 a	26.1±3.4 a
LHT ²	28.4±5.3 b	1627±17 b	23.1±3.4 b

Additional yield is not a function of extra nutrients, but of biological activity of humic product

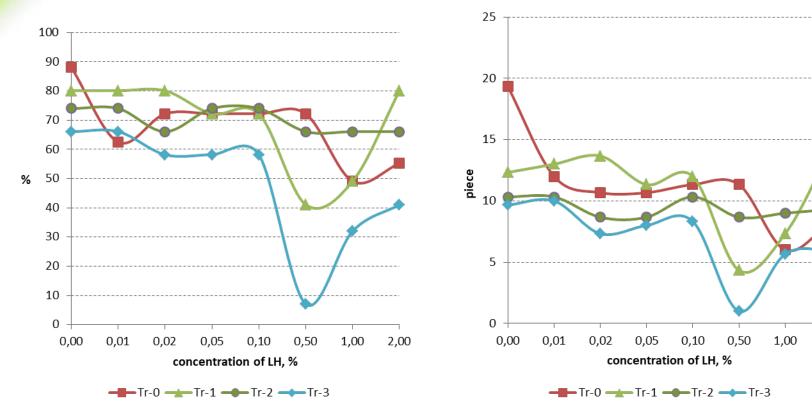
Rice grain oven weight

COMBINATION WITH BIOLOGICAL PRODUCT

TO KNOW

How effective is the combine application of *Trichoderma* spp. and *Lignohumate* to control clubroot and promote the growth of cabbage?

	0 (0 g)	1x10 ⁶ (5 g)	2x10 ⁶ (10 g)	3x10 ⁶ (15 g)
LH, %	Tr-0	(3 g) Tr-1	(10 g) Tr-2	Tr-3
0.00	+	+	+	+
0.01	+	+	+	+
0.02	+	+	+	+
0.05	+	+	+	+
0.10	+	+	+	+
0.50	+	+	+	+
1.00	+	+	+	+
2.00	+	+	+	+


Credits to: Dr Ketut Suada et al

EFFECT ON CLUBROOT MANIFESTATION

Amount of clubroots on cabbage under

treatment of LH and Trichoderma

Disease incidence of clubroot on cabbage under treatment of LH and Trichoderma

Humic product enhances the effect of biological agent. Synergy!

2,00

FINAL REMARKS

- Humic amendment was for the first time tested for crop cultivation in tropics and showed the promising prospects.
- Positive effects were observed both for HA along and for combinations with insecticide and biological agent. It was likely able to maintain plant resistance to a toxic influence of pesticide and to mitigate fungal disease. These effects can be of a special benefit for farmers.
- However further experiments need to be focused on optimization of its application under local climate conditions and agricultural practices. Experiments need also to be done on a variety of plants including vegetables and horticultural crops in order to get the optimum dosage of each plant.

Acknowledgements

Natalia Shchegolkova

ASEAN-RUSSIA JOINT PROJECT

ANNEX 1

Rodion Poloskin

Oleg Gladkov

Sergey Kokhan

Ketut Suada

Ngurah Santosa

fppt.com

Thank you for your attention

нарру

